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ABSTRACT 

For T a completely regular topological space and X a strictly convex 

Banach space, we study the extremal structure of the unit ball of the 

space C(T, X) of continuous and bounded functions from T into X. We 

show that when dim X is an even integer then every point in the unit 

ball of C(T, X) can be expressed as the average of three extreme points 

if, and only if, dim T < dim X, where dim T is the covering dimension of 

T. We also prove that, if X is infinite-dimensional, the aforementioned 
representation of the points in the unit ball of C(T, X) is always possible 

without restrictions on the topological space T. Finally, we deduce from 
the above result that the identity mapping on the unit ball of an infinite- 
dimensional strictly convex Banach space admits a representation as the 
mean of three retractions of the unit ball onto the unit sphere. 

Let Y be a normed space; we will denote by B(Y),  S(Y) and  E(Y)  its closed 

uni t  ball, its uni t  sphere and the set of extreme points  of B(Y) ,  respectively. 

The aim of this paper  is to ob ta in  new informat ion  abou t  a conjecture posed 

by Cantwell  (see [3]) about  the extremal  s t ructure  of the un i t  bal l  in spaces of 

cont inuous functions. Namely, results of [1], [3], [5], [6] and  [7] are extended.  

From now on, T denotes a topological space, X a real normed space and  

C(T, X)  the space of cont inuous and  bounded  functions from T into X wi th  its 
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usual uniform norm. Frequently we will write Y instead of C(T , X ) .  

Topological spaces in this note are assumed to be completely regular*. In view 

of [10, Corollary 1.8] this supposition is scarcely restrictive. 

As we have already said, we prove in this note that if X is a strictly convex 

normed space with even dimension, every element of the unit ball of C(T, X)  can 

be expressed as the average of three extreme points if, and only if, dim T < dim X, 

where dim T denotes the covering dimension of T (see [4] for definitions), This 

number 3 cannot be improved in general [8]. We also show that, when X is an 

infinite-dimensional strictly convex Banach space and T is any topological space, 

the aforementioned representation of the points in the unit ball of C(T, X)  is 

always possible. From this result we deduce that the identity mapping on the 

unit ball of an infinite-dimensional strictly convex Banach space is the average 

of three retractions of the unit ball onto the unit sphere. 

It is worth mentioning that our results depend on the existence of continuous 

mappings from the unit sphere of a normed space into itself without fixed or 

antipodal points. This excludes the spaces of odd dimension. The existence of 

such mappings for infinite-dimensional Banach spaces was proved in 

[1, Proposition 12]. 

To get our objectives we will need the following lemma which can be proved 

similarly to [7, Lemma 3] (which is a particular case of it). 

LEMMA 1 : Let M be a two-dimensional strictly convex normed space. Consider 

a in M \{0} and f E M" such that kerr  = Lin {a} (the linear expansion of{a}).  

Suppose there exist x, y E S(M)  satisfying f ( x )  >>_ O, f (y)  >_ 0 and [ix - a[[ = 

[[y - a[[. Then x = y. 

Let M be a normed space; given b E M and 6 > 0 we denote 

S(b, 6) = {z e M: i]z - bl] = 6}. 

The geometric meaning of Lemma 1 is clarified by the following Proposition 

(which is an immediate consequence of it). 

PROPOSITION 2: Let M satisfy the hypotheses of Lemma 1. Then, given bl, b2 E 

M with bl ~ b2 and 61,62 E R -4-, the set 

S(bl, 61) M S(b2, 62) 

* The results extend to all topological spaces if dim T < dim X is replaced by some 
technical condition (see in [1] the extension property). 
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contains at most two points. 

The next result is a generalization of [1, Proposition 9] which can be obtained 
1 by taking A = ~ .  

PROPOSITION 3: Let X be a strictly convex normed space. Assume there exists 

a continuous mapping v: S (X)  ~ S (X)  with v(x) ~ x, v(x) ~ - x ,  for every x 

in S(X) .  Given any A �9 ]0, 1[ consider the set 

B = { x � 9  X \  {0}: [2A- 1] <_ ]]x[] _< 1}. 

Then there are continuous mappings ~1, r B ~ S (X)  such that 

x = A(Ih(x) + (1 - A)(b2(x), Vx �9 B. 

Proof." Define g: [0, 2] • B ---, X by 

(2 t ) v ( ~ ) - ( t - 1 ) ~  i/ 1 < t < 2 .  

Evidently g is continuous and g(t, x) ~ 0, V(t, x) �9 [0, 2] • B. So we can consider 

the mapping F: [0, 2] • B --* S (X)  defined by r( t ,  x) = ~ V(t, x) �9 [0, 2] • B. 
119(t ,x) l l  ' 

Let  us ~ :~ e B .  I t  is ~lea~ tha t  2~ - 1 _< I1~11 -< 1, hence II1~11 - ~1 -< 1 - A 

and so 

x ~ - ~ r ( 0 , x )  - 1 x -  ~ ~ - IIIl11-~-~1 < 1. 
I - A  1 -  -- 1----~ ~ - 

On the other hand (taking into account that Hx[[ _> 1 - 2A) 

]b" ,b 11 ,,+,,I 1--A 1--A F(2 'x 1 A x + A  = _> 1. 

Consequently, there is t E [0, 2] such that 

x ~-sr(t,z) = 1, (*) 1 - ,~ 1 - 

t h a t  is, I I~-F( t ,x ) l{  = '~__.A. Let a =  ~, M = Lin{a ,v  (llz~l[)} and consider 

f E M* such that ker f = Lin{a} and f(v'. ( 1 ~ ) )  > 0. Then it is clear that 

f (F( t ,x ) )  ___ 0,Vt �9 [0,2]. Moreover it is easy to check that if t l , t2 �9 [0,2] and 

tl r t2 then F(t l ,x)  r F(t2,x). Thus by Lemma 1 there is only one t for which 

(.) holds. We denote it by t(x). 
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The mapping x ,  , t(x) from B into [0, 2] is continuous. Indeed, if x E B is a 

point of discontinuity of the above mapping, then we can find a sequence {xn} 

of elements in B and t in [0, 2] such that (xn} --* x and {t(xn)} ~ t ~ t(x). By 

the continuity of F we can assert that 1-~ = 1 and this contradicts the 

unicity of t(x). 

Finally, define r162 B-- ,  S (X)  by 

x -  v x  e B .  r  -- F( t (x) ,x) ,  r  : 1 -  A ' 

It is obvious that  r and r satisfy the required conditions. | 

It is well known that  if X is a Banach space with even dimension there is a 

continuous mapping v: S(X)  --* S (X)  such that v(x) ~ x and v(x) ~ - x ,  for 

every x in S(X) .  The existence of such mappings for infinite-dimensional Banach 

spaces was proved in [1, Proposition 12]. 

We can now prove the following result. 

THEOREM 4: Let T be a topological space and X a strictly convex Banach 

space with even or infinite dimension. I f  Y = C(T, X),  given f E B(Y)  with 

f ( t )  # 0,Vt e T and A e [�89 1(1 + m(/) ) ]  (where re(f) = Inf{llf(t)[[: t e T})  

there exist el, e2 e E(Y)  such that 

f = A e l + ( 1 - A ) e 2 .  

Proo~ Let f and A satisfy the above assumptions. Then it is clear that re(f)  >_ 

2A - 1, hence [If(t)ll >_ 2A - 1 = [2A - 11 ,Vt e T. If A = 1 it is obvious that  

f E E(Y)  and we can considerel  = e 2  = f .  I fA < l l e t ' s c h o o s e r  and r 

verifying the conditions of the above proposition. Then 

f ( t )  = Ar  + (1 - A)r V t e  T. 

So the proof is completed by defining el = r o f and e2 = r o f .  | 

In order to obtain our main result we need the following proposition which was 

proved in [2, Proposition 5.2] in case Y is a C*-algebra. 

PROPOSITION 5: Under the hypotheses of Theorem 4 let's fix e 6 E(Y) ,  9 E 

B(Y)  and a, 8 ,%6  E R + with a > 8, a + 8 = "r + ~ and %~ in [8, a]. Then 

there exist el, e2 E E(Y)  such that ae + 8g = ~/el + 5e2. 
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Proof: Clearly the mapping f = ~ omits the origin. In fact, a+f~ 

a - f ~  
m ( f )  >> > O. 

a + 3  

Let's suppose without loss of generality that * _< % If we define A = ~ it 

1 < A < + m( f ) ) .  So, by the above theorem, there exist is easily seen that  ~ _ _ �89 

el,e2 E E ( Y )  such that  f = Ael + (1 - A)e2, that is ~ + ~  = --2-e~+~ 1 + ~ e2. 

l 

THEOREM 6: Let T be a topological space, X a strictly convex Banach space 

and Y = C(T, X) .  Suppose that either of the following conditions hold: 

1. X has even dimension and dim T < dim X or 

2. X is infinite-dimensional. 

Then, given f E B ( Y )  and "~1, "~2, '~3 E]0, 1[ with '~1 + A2 + "~3 : 1, there exist 

ex,e2, e3 E E ( Y )  such that 

f = Ale1 + A2e2 + A3e3. 

Proof: We can naturally suppose that )4 >_ A2 and A1 _> A3. For e sufficiently 

small we have a := A1 + e < 1 , fl := A2 - e > 0 and, of course, a > fl and a > Aa. 

By [1, Theorem 2 and Corollaries 4 and 5] there are e E E ( Y )  and g E B ( Y )  

such that  

f ---- ae + (1 - a)g ---- ae -b/3g + A3g. 

Now, by Proposition 5 there exist e~, e~ E E ( Y )  such that ae+~g = ae~l +13e~. 

= " E ( Y )  for Hence f ae~ + ~3e[ + A3g. For the same reason there are el,  ea e 

which ae~ + A3g = ae~' + A3e3 and so f = ae' 1' + 13e~2 + Aae3. Finally, since 

a + j3 = A1 + A2 and A1,A2 E [f~,a] we can again apply the above proposition 

to obtain el, e2 E E ( Y )  such that  ae' 1' + ~e~2 = Ale1 + A2e2 �9 Therefore f = 

A l e l  -[- A2e  2 -[- A3e3 and the proof is complete. I 

From [2, Theorem 5.7] and [9, Corollaries 3.6 and 3.7] a sinlilar result can be 

derived for Y = C(T, C). 

Remark 7: It is easy to check that  if Y is any normed space satisfying the 

conclusion of the above Theorem, then Y satisfies, in fact, the following property: 

B ( Y )  = A lE(Y)  + A2E(Y) + . . .  + XkE(Y) 

for every k _> 3 and A1, A2,. . . ,  Ak e]0, �89 [ with h i  "[- A2 "[- " " " -[- Ak ----- 1. | 
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The infinite-dimensional case of Theorem 6 is trivially equivalent to the 

following result which is obtained by taking T = B(X).  

COROLLARY 8: Let X be an infinite-dimensional strictly convex Banach space. 

Then, for each natural k >_ 3 and AI, A 2 , . . .  , A k �9 1[ with h I -f-A2-[-''"-[-Ak = 1, 

there exist retractions el, e2 , . . . ,  ek of the unit ball of X onto the unit sphere of 

X such that 

x = Alel(x) + A2e2(x) + - - .  + Akek(x), for every x in B(X) .  

In particular, there exist three retractions el, e2, e3 from B(X)  onto S(X)  such 

that 
el(x) + e2(x) + ea(x) Vx �9 B(X).  

x- -  3 ' 

The next result shows that the number 3 in the previous Corollary is the best 

possible. First let us observe that if A �9 1[ and el, e2 are continuous mappings 

from B(X)  into S(X)  with 

x = Ae~(x) + (1 - A)e~(x),  v x  �9 B ( X ) ,  

1 then A = 1 -  A = 3" 

PROPOSITION 9: Let X be an arbitrary normed space. There are no two 

continuous mappings el, e2 from B(X)  into S(X) such that 

e l ( x )  + e2(x) 
x - for every x in B(X) .  

2 
Proof'. Suppose there exist el and e2 satisfying the above conditions and let 

U : el(0). Given t el0, �89 we have 

2 - e l ( tu )  

( 1 -  2t)el(tu) +e2(tu)H > 1 - ( 1 - 2 t ) - 1 .  

2t [t - 2t 

By continuity of el, letting t tend to 0, we get []u-el(0)[[ _> 1, a contradiction. 

We now suppose that  X is finite-dimensional. It was proved in [5, Corollary 

9] that  if d i m X  _> 2 and T is a completely regular space, then B(Y)  = co(E(Y)) 

if, and only if, d imT < dimX, where co(E(Y)) denotes the convex hull of E(Y).  

Accordingly, the following result is clear in view of Theorem 6 and Remark 7. 
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COROLLARY 10: Let T be a topological space and X a strictly convex space with 

even dimension. For Y = C(T, X )  the following conditions are equivalent: 

1. For every A1, A2, A3 e]0, �89 with A, + A2 + A3 = 1, 

B ( Y )  = AlE(Y) + A2E(Y) + A3E(Y). 

2. B ( Y )  = E ( Y ) + E ( Y ) + ( ' ~ ' } + E ( Y )  for every k > 3. 
k 

3. B ( Y )  = co(E(Y)) (the convex hull o r E ( Y ) ) .  

4. dim T < dim X. 

The equivalence between conditions 3 and 4 in the above result was proved 

in [1, Corollary 11] but condition 2 was only obtained for k = 4. Moreover, 

as we have already said, in [5, Corollary 9] were also proved the aforementioned 

equivalence for dim X _> 2 (even or odd) but in this (more general) case condition 

2 was obtained for k = S. Other particular cases can be found in [3] and [7]. 
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